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A network of chaotic units is investigated where the units are coupled by signals with a transmission delay.
Any arbitrary finite network is considered where the chaotic trajectories of the uncoupled units are a solution
of the dynamic equations of the network. It is shown that chaotic trajectories cannot be synchronized if the
transmission delay is larger than the time scales of the individual units. For several models the master stability
function is calculated which determines the maximal delay time for which synchronization is possible.
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A low-dimensional dynamical system can show irregular
motion which is extremely sensitive to its initial state, hence
in practice its motion cannot be predicted �1�. When two or
more such chaotic units are coupled by exchanging signals of
their variables they can synchronize: the motion of the whole
network is still chaotic but the units may have identical com-
mon trajectories �2�. This is the case of complete synchroni-
zation which is considered in this contribution �3�.

This counterintuitive phenomenon of chaos synchroniza-
tion recently receives a lot of attention due to its neurobio-
logical implications, its application on secure communica-
tion, its realizations on arrays of electronic circuits and
lasers, and its mathematical fascination �4–7�.

For almost all applications of chaotic networks, the cou-
pling is time delayed due to the nonzero transmission time of
the exchanged signals. Time delay can generate high-
dimensional chaos �hyperchaos�, an important example are
semiconductor lasers where chaos is generated by time-
delayed feedback �8–12�. Networks of chaotic units with de-
layed couplings can synchronize, as well �13–19�.

Several methods have been developed to analyze the sta-
bility of the synchronized trajectory of chaotic networks
�13–29�. Usually, the stability of the synchronization mani-
fold is determined by transverse Lyapunov exponents. A
powerful method combines the transverse Lyapunov expo-
nents with eigenvalues of the coupling matrix. The resulting
master stability function describes synchronization of any
arbitrary network of given identical chaotic units �30�.

In this contribution we calculate the master stability func-
tion of networks of chaotic units with time-delayed cou-
plings. For the case, where the delay times of transmission
are much larger than any characteristic time scales of the
individual units, we conjecture that the chaotic trajectories of
the individual units cannot be synchronized. This holds for
any network including the case where the individual units
contain self-feedback delays. For several models, chaotic
flows as well as maps, we calculate the master stability func-
tion and determine the maximal delay time for which syn-
chronization can occur.

Following Pecora and Caroll �30�, we consider a set of N
identical units where xi is the m-dimensional vector of dy-
namical variables of the ith unit. The isolated �uncoupled�
dynamic is ẋi=F�xi� for each node. For the coupling, the
transmitted signal, we define a function H :Rm→Rm which is

identical for each unit. Thus, the dynamics of the network is
defined as

ẋi�t� = F�xi�t�� + ��
j

GijH�x j�t − ��� . �1�

The matrix Gij determines the edges and weights of the
network; � is the coupling strength. For the moment we
consider a single delay time �, since it has been shown
that multiple delay times destroy chaos synchronization �18�.
We are interested in the question whether the chaotic
trajectories of the single units can be synchronized by the
second term of Eq. �1�. Hence, we use � jGij =0. Thus, the
SM x1=x2= . . . =xN=x with ẋ=F�x� is a solution of Eq. �1�.

For a discrete time t the corresponding equations for the
iterated maps are

xt
i = F�xt−1

i � + ��
j

GijH�xt−�
j � . �2�

Pecora and Caroll have shown that the stability of the
synchronization manifold can be analyzed with the eigenval-
ues �k, k=0,1 , . . . ,N−1, of the coupling matrix G. Linear-
izing Eq. �1� close to the SM gives a set of mN coupled
linear ODEs, but it is sufficient to consider the stability of m
ODEs �19,30�,

�̇�t� = DF�x�t����t� + bDH�x�t − �����t − �� . �3�

DF and DH are the Jacobian functions evaluated at the
synchronization manifold which is identical for each node. �
is the m-dimensional vector which determines the stability of
the kth eigenmode with b=��k. The master stability function
is defined as the maximal Lyapunov exponent of Eq. �3�.

By definition, the coupling matrix G has the eigenvalue
�k=0 which belongs to the eigenmode tangential to the SM.
Since each unit is supposed to be chaotic, Eq. �3� is unstable
for b=��k=0, i.e., the maximal Lyapunov exponent �0 of
the isolated units is positive. All other eigenvalues belong to
perturbations away from the SM, i.e., they determine the
stability of chaos synchronization. Thus, we want to know
whether the second term of Eq. �3� can stabilize the network
although the first term alone would lead to exponential ex-
plosion, i.e., whether the maximal Lyapunov exponent �c of
the coupled units can be negative although �0 is positive.
When Eq. �3� is stable for all eigenvalues �k�0, the network
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has a stable SM and the delayed coupling can synchronize
the specific network. Note that the stability of Eq. �3� deter-
mines chaos synchronization for all possible networks, in-
cluding delayed self-feedback.

The corresponding master stability equation for one-
dimensional iterated maps is given by

�t = f t−1� �t−1 + bht−�� �t−�, �4�

where the derivatives of the functions f�x� and h�x� are taken
at the trajectory xt= f�xt−1�.

The main result of this contribution is that the delay term
of Eqs. �3� and �4� cannot damp the exploding local term
when the delay time � is sufficiently large. There are two
arguments supporting this statement. First, the local term,
without coupling, leads to ��t��exp��0t�. Thus, when the
system is unstable the delay term is exponentially small
�exp�−�0�� compared with the local term, it has no influ-
ence on the stability for large � �31�. This argument ignores
fluctuations of the prefactors of Eqs. �3� and �4� which act
like random multiplicative noise. In the limit of large delay,
these fluctuations are uncorrelated, therefore they cannot
counteract against the exponentially diverging perturbation
driven by the local term of Eqs. �3� and �4�.

We could not find a rigorous mathematical proof of our
general conjecture, but our arguments are supported by the
following analytical and numerical results of chaotic maps
and flows. First, for an analytical solution, we consider the
case of iterated maps, Eq. �4�, for the Bernoulli shift
f�x�=h�x�= ���mod 1 in the chaotic regime ��1. The local
Lyapunov exponent �0=ln � is positive. The discontinuities
of f�x� do not influence the stability of Eq. �4�, hence one has
to solve the linear equation

�t = ��t−1 + b��t−�. �5�

The ansatz �t= ��c�eı	�t yields � solutions and the stability
border �c�max=1 is given by the equations

� =
sin�	��

sin�	�� − 1��
, �6�

b =
1

�
cos�	�� − cos�	�� − 1�� , �7�

� + b� = 1, �8�

with 	� �0,
�. These boundaries are shown in Fig. 1, for
different values of delay �. Only for negative coupling con-
stants the delay term can synchronize the chaotic network.
The maximal possible delay time is obtained from Eq. �5� in
the limit of 	→0,

�max =
�

� − 1
=

e�0

e�0 − 1
. �9�

Thus, for large delay we find that synchronization can
only occur if the delay is not much larger than 1 /�0, the
characteristic time scale of the individual chaotic unit, or in
other words, if the chaos is sufficiently weak.

For a more realistic model, the coefficients of Eq. �4� are
not constant, but they fluctuate due to the underlying chaotic

dynamics. Do fluctuations enhance synchronization? Our nu-
merical simulation of the logistic map f�x�=h�x�=rx�1−x�
shows that the maximal value of the delay time �max is not
much larger than the Lyapunov time 1 /�0. Thus, fluctuations
decrease the ability to synchronize.

The second support of our conjecture is shown for a net-
work of coupled Roessler equations. We use the same param-
eters and coupling as in Ref. �30�, ẋ=−�y+x�, ẏ=x+0.2y,
ż=0.2+ �x−0.7�z, and H�x ,y ,z�= �x ,0 ,0�. Figure 2 shows
the results of the numerical simulation of the master stability
Eq. �3�.

For �=0 we reproduce the results of Ref. �30�. With in-
creasing delay the coupling region where chaos synchroniza-
tion is possible shrinks up to �max�1. For larger values of �
there is no network which can synchronize this Roessler sys-
tem. The maximal delay is smaller then the Lyapunov time
1
�0

�10, it is of the order of the time scale between the peaks
of the variable z�t�.

Our examples for iterated maps and chaotic flows support
the general conjecture: chaotic units cannot be synchronized
when the coupling delay is larger then the local time scales.
Similar results have been found in different contexts, namely,
for chaos control and chaos anticipation: an unstable periodic
orbit can only be stabilized and chaos can only be predicted
if the delay time of the control terms is not much larger than
the Lyapunov time �20,32,33�.

We have considered a coupling matrix with �Gij =0
which leads to the synchronization of the isolated chaotic
trajectories. But if this condition is released, then the syn-
chronized trajectories are different from the isolated ones,
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FIG. 1. �Color online� Regimes of stable complete synchroniza-
tion. Inside the triangle the master stability function for a chaotic
network is negative. � is the parameter of the Bernoulli shift with
�0=ln � and b is the rescaled coupling constant. With increasing
delay time � the region of synchronization shrinks.
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FIG. 2. �Color online� Regime of stable synchronization for a
network of chaotic Roessler units. b is the rescaled coupling con-
stant and � is the delay time of the transmitted signals.
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and the local Lyapunov exponents �0 defined from the Jaco-
bian DF evaluated at the new trajectory may become nega-
tive. This cannot occur for the Bernoulli shift, but for the
logistic map we found that the delay term alone can generate
negative values of �0 which leads to synchronized chaos.

One important example of the case � jGij�0 are two la-
sers coupled by their mutual laser beams �12�. This system is
described by rate equations which have the structure of Eq.
�1�. The local term is nonchaotic, �0�0, and chaos is gen-
erated by the feedback terms Gii and coupling terms G12 and
G21. Chaos synchronization has been achieved for extremely
large delay times, namely, by transmitting light over 120 km
�34–36�. The first laser has a feedback loop and drives a
second laser without feedback. When the feedback time is
identical to the coupling time complete synchronization
without time shift is possible. But even when these delay
times are different, the two chaotic trajectories can synchro-
nize with a time lag. With short coupling times anticipated
chaos has been found �33�. Our stability analysis shows that
for this case synchronization can only occur if �0 of the
second laser is negative. Chaotic units cannot be synchro-
nized by unidirectional couplings, independent of the value
of the coupling delay time.

For the case of bidirectional coupling, the previous state-
ment is not valid. For example, when two lasers with feed-
back are mutually coupled one finds complete synchroniza-
tion even when two isolated units with feedback are chaotic
�37–41�. This holds even when the delay time of the cou-
pling is different from the one of the feedback �42�. For the

case with multiple coupling and feedback delays, and for
networks with � jGij�0, we still do not know whether our
conjecture is true, in general. But here we present an analyti-
cally solvable example which shows that for two chaotic
systems with delayed feedback, synchronization is not pos-
sible if the coupling delay is sufficiently large.

We extend the analysis to a general network of identical
chaotic units with feedback time � f which are coupled by
exchanging signals with a delay time �c. The corresponding
equations for the Bernoulli map are

xt
i = �1 − ��f�xt−1

i � + �f�xt−�f

i � + ��1 − ��
j�i

Gijf�xt−�c

j � ,

�10�

with �Gij =1. Now the matrix G has an eigenvalue �0=1
which determines the Lyapunov exponent tangential to the
SM. An stability analysis of Eq. �10� shows that the whole
network is chaotic for all parameter values � and . To com-
pare with the case of lasers, we consider the case where the
isolated units without feedback are not chaotic, i.e.,
�1−����1. But with feedback a stability analysis similar to
Eq. �4� shows that the uncoupled units are chaotic for

 �
1 − ��1 − ��

��
. �11�

Note that our analysis shows that this border does not
depend on the value of the feedback delay � f. Adding the
coupling term of Eq. �10� the chaotic units can be synchro-
nized even if inequality �11� holds. However, we find the
synchronization is not possible for

 � 1 +
1 − �

���1 − �k�
, �12�

where �k are the eigenvalues of the coupling matrix G with
�k��0=1. Below border �12� synchronization depends sen-
sitively on the values � f and �c, as shown in Fig. 3 for the
case of two interacting units ��1=−1�. But our stability
analysis shows that synchronization is not possible when

�c �
��1 − ����k − 1�

�k�� − 1�
+

��1 + ���k − 1�� − 1

�k�� − 1�
� f �13�

for all modes �k��0. Thus, again we find that synchroniza-
tion is not possible when the coupling delay is much larger
than the time scales of the individual units. Note, however,
that the prefactor of � f in Eq. �13� diverges for �→1. Con-
sequently, when the chaos of the isolated units is sufficiently
weak, �c may become very large compared to � f.

These analytic results for Bernoulli systems are supported
by numerical simulations of the laser equations �42�. In the
limit of large coupling delay, synchronization disappears
when the lasers are chaotic due to the feedback delay.
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FIG. 3. �Color online� Analytical bounds of complete synchro-
nization for two Bernoulli units with self-feedback. � f is the delay
of the self-feedback and �c the one of the coupling.  determines the
strength of the feedback and � the one of the total delay terms, see
Eq. �10�. Above the solid line the isolated units with feedback are
chaotic. Above the upper dashed line the two units cannot be syn-
chronized, for any values of � f and �c. The lower dashed line deter-
mines a bound for the border to complete synchronization. The dots
are results from numerical simulations. � f =20, �=1.5, �a�: �c=21,
�b�: �c=60.
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